The CASF Benchmark Package for Download |
CASF-2016 |
Notice: You should register and login before downloading the CASF-2016 package. (size: 1.46GB)
Reference:
Su M.Y.; Yang Q.F.; Du Y.; Feng G.Q.; Liu Z.H.; Li Y.; Wang R.X.*Comparative Assessment of Scoring Functions: The CASF-2016 Update. J. Chem. Inf. Model., 2019. DOI: 10.1021/acs.jcim.8b00545.
|
CASF-2013 |
Notice: You should register and login before downloading the CASF-2013 package. (size: 636MB)
References:
(1) Li, Y.; Liu, Z. H.; Han, L.; Li, J.; Liu, J.; Zhao, Z. X.; Li, C. K.; Wang, R. X.* "Comparative Assessment of Scoring Functions on an Updated Benchmark: I. Compilation of the Test Set", J. Chem. Inf. Model., 2014, doi: 10.1021/ci500080q.
(2) Li, Y.; Han, L.; Liu, Z. H.; Wang, R. X.*, "Comparative Assessment of Scoring Functions on an Updated Benchmark: II. Evaluation Methods and General Results", J. Chem. Inf. Model., 2014, doi: 10.1021/ci500081m.
|
CASF-2007 |
Notice: You should register and login before downloading the CASF-2007 package. (size: 92MB)
Reference:
Cheng T.J.; Li X.; Li Y.; Liu Z.H.; Wang R.X."Comparative assessment of scoring functions on a diverse test set", J. Chem. Inf. Model., 2009, 49(4):1079-1093.
|
Selected applications of the CASF benchmark published by other researchers |
2021 | |
(1) | Zhang, X. J.; Shen, C.; Guo, X. Y.; Wang, Z.; Weng, G. Q.; Ye, Q.; Wang, G. A.; He, Q. J.; Yang, B.; Cao, D. S.; Hou, T. ASFP(Artifical Intelligence based Scoring Function Platform): a web server for the development of customized scoring functions. J. Cheminform. 2021, 13:6. (CASF-2016, evaluation) |
(2) | Wong, K. M.; Tai, H. K.; Siu, S. W. I. GWOVina: a grey wolf optimization approach to rigid and flexible receptor docking. Chem. Biol. Drug Des. 2021, 97, 97-110. (CASF-2013, docking power evaluation) |
2020 | |
(3) | Bao, J. X.; He, X.; Zhang, J. Z. H. Development of a new scoring function for virtual screening: APBScore. J. Chem. Inf. Model. 2020, 60, 6355-6365. (CASF-2016 core set, evaluation) |
(4) | Flachsenberg, F.; Meyder, A.; Sommer, K.; Penner, P.; Rarey, M. A consistent scheme for gradient-based optimization of protein-ligand poses. J. Chem. Inf. Model. 2020, 60, 6502-6522. (CASF-2016 core set) |
(5) | Acharya, A. et al Supercomputer-based ensemble docking drug discovery pipeline with application to Covid-19. J. Chem. Inf. Model. 2020, 60, 5832-5852. (conclusion, RF scoring function) |
(6) | Wang, E.; Liu, H.; Wang, J.; Weng, G.; Sun, H.; Wang, Z.; Kang, Y.; Hou, T. Development and evaluation of MM/GBSA based on a variable dielectric GB model for predicting protein-ligand binding affinities. J. Chem. Inf. Model. 2020, 60, 5353-5365. (use CASF-2013 core set for training and test) |
(7) | Mirza, M. U.; Ahmad, S.; Abdullah, I.; Froeyen, M. Identification of novel human USP2 inhibitor and its putative role in treatment of COVID-19 by inhibiting SARS-CoV-2 papain-like (PLpro) protease. Comput. Biol. Chem. 2020, 89:107376. (conclusion, AutoDock Vina) |
(8) | Kwon, Y.; Shin, W. H.; Ko, J.; Lee, J. AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks. Int. J. Mol. Sci. 2020, 21, 8424. (CASF-2016, evaluation) |
(9) | Macari, G.; Toti, D.; Pasquadibisceglie, A.; Polticelli, F. DockingApp RF: A State-of-the-Art Novel Scoring Function for Molecular Docking in a User-Friendly Interface to AutoDock Vina. Int. J. Mol. Sci. 2020, 21, 9548. (CASF-2013, CASF-2016, evaluation) |
(10) | Liu, H.; Deng, J. P.; Luo, Z.; Lin, Y. W.; Merz, K. M.; Zheng, Z. Receptor-Ligand Binding Free Energies from a Consecutive Histograms Monte Carlo Sampling Method. J. Chem. Theory Comput. 2020, 16, 6645-6655. (CASF-2016, evaluation) |
(11) | Zheng Z.; Borbulevych, O. Y.; Liu, H.; Deng, J. P.; Martin, R. I.; Westerhoff, L. M. MovableType Software for Fast Free Energy-Based Virtual Screening: Protocol Development, Deployment, Validation, and Assessment. J. Chem. Inf. Model. 2020, 60, 5437-5456. (CASF-2016, evaluation) |
(12) | Francoeur, P. G.; Masuda, T.; Sunseri, J.; Jia, A.; Iovanisci, R. B.; Snyder, I.; Koes, D. R. Three-dimensional convolutional neural networks and a cross-docked data set for structure-based drug design. J. Chem. Inf. Model. 2020, 60, 4200-4215. (CASF-2016 core set, evaluation) |
(13) | Morrone, J. A.; Weber, J. K.; Huynh, T.; Luo. H.; Cornell, W. D. Combining Docking Pose Rank and Structure with Deep Learning Improves Protein–Ligand Binding Mode Prediction over a Baseline Docking Approach. J. Chem. Inf. Model. 2020, 60, 4170-4179. (CASF-2013, binding mode prediction) |
(14) | Wei, L.; Wen, W.; Rao, L.; Huang, Y.; Lei, M.; Liu, K.; Hu, S.; Song, R.; Ren, Y. Cov_FB3D: A De Novo Covalent Drug Design Protocol Integrating the BA-SAMP Strategy and Machine-Learning-Based Synthetic Tractability Evaluation. J. Chem. Inf. Model. 2020, 60, 4388-4402.(conclusion, X-Score) |
(15) | Smith, S. T.; Meiler, J. Assessing multiple score functions in Rosetta for drug discovery. PLOS One 2020, 15:e0240450. (CASF-2016, evaluation) |
(16) | Imrie, F.; Bradley, A. R.; van der Schaar, M.; Deane, C. M. Deep generative models for 3D linker design. J. Chem. Inf. Model. 2020, 60, 1983-1995. (use CASF-2016 core set for test) |
(17) | Gao, K.; Nguyen, D. D.; Sresht, V.; Mathiowetz, A. M.; Tu, M.; Wei, G. W. Are 2D fingerprints still valuable for drug discovery? Phys. Chem. Chem. Phys. 2020, 22, 8373-8390. (use CASF-2016 core set for test) |
(18) | Zhu, F.; Zhang, X.; Allen, J. E.; Jones, D.; Lightstone, F. C. Binding Affinity Prediction by Pairwise Function Based on Neural Network. J. Chem. Inf. Model. 2020, 60, 2766-2772. (CASF-2016) |
(19) | Hassan-Harrirou, H.; Zhang, C.; Lemmin, T. RosENet: Improving Binding Affinity Prediction by Leveraging Molecular Mechanics Energies with an Ensemble of 3D Convolutional Neural Networks. J. Chem. Inf. Model. 2020, 60, 2791-2802. (CASF-2016 core set, evaluation) |
(20) | Fine, J.; Konc, J.; Samudrala, R.; Chopra, G. CANDOCK: Chemical Atomic Network-Based Hierarchical Flexible Docking Algorithm Using Generalized Statistical Potentials. J. Chem. Inf. Model. 2020, 60, 1509-1527. (CASF-2016, docking power) |
(21) | Karlov, D. S.; Sosnin, S.; Fedorov, M. V.; Popov, P. graphDelta: MPNN Scoring Function for the Affinity Prediction of Protein-Ligand Complexes. ACS Omega 2020, 5, 5150-5159. (CASF-2016, scoring power) |
(22) | Boyles, F.; Deane, C. M.; Morris, G. M. Learning from the ligand: using ligand-based features to improve binding affinity prediction. Bioinformatics 2020, 36, 758-764. (CASF-2007, CASF-2013, CASF-2016) |
(23) | Soni, A.; Bhat, R.; Jayaram, B. Improving the binding affinity estimations of protein-ligand complexes using machine-learning facilitated force field method. J. Comput.-Aided Mol. Des. 2020, 34, 817-830. (CASF-2007, CASF-2013, CASF-2016) |
(24) | Xie, L.; Xu, L.; Chang, S.; Xu, X.; Meng, L. Multitask deep networks with grid featurization achieve improved scoring performance for protein-ligand binding. Chem. Biol. Drug Design 2020, 96, 973-983. (CASF-2016, evaluation) |
(25) | Ropon-Palacios, G.; Chenet-Zuta, M. E.; Olivos-Ramirez, G. E.; Otazu, K.; Acurio-Saavedra, J.; Camps, I. Potential novel inhibitors against emerging zoonotic pathogen Nipah Virus: a virtual screening and molecular dynamics approach. J. Biomol. Struct. Dynamics 2020, 38, 3225-3234. (conclusion, X-Score) |
(26) | Li, C.; Sun, J.; Palade, V. Diversity-guided Lamarckian random drift particle swarm optimization for flexible ligand docking. BMC Bioinformatics 2020, 21:286. (CASF-2016, evaluation) |
(27) | Yang, Y.; Zheng, S.; Su, S.; Zhao, C.; Xu, J.; Chen, H. SyntaLinker: automatic fragment linking with deep conditional transformer neural networks. Chem. Sci. 2020, 11, 8312-8322. (use CASF-2016 for test set) |
(28) | Yang, J.; Shen, C.; Huang, N. Predicting or pretending: artificial intelligence for protein-ligand interactions lack of sufficiently large and unbiased datasets. Front. Pharmacol. 2020, 11:69. (CASF-2013 core set) |
2019 | |
(29) | Wang, F.; Wu, F. X.; Li, C. Z.; Jia, C. Y.; Su, S. W.; Hao, G. F.; Yang, G. F. ACID: a free tool for drug repurposing using consensus inverse docking strategy. J. Cheminform. 2019, 11:73 (CASF-2013 for test in drug repurposing). |
(30) | Lu, J.; Hou, X.; Wang, C.; Zhang, Y. Incorporating Explicit Water Molecules and Ligand Conformation Stability in Machine-Learning Scoring Functions. J. Chem. Inf. Model. 2019, 59, 4540-4549. (CASF-2016, evaluation) |
(31) | Li, H.; Peng, J.; Sidorov, P.; Leung, Y.; Leung, K.-S. Classical scoring functions for docking are unable to exploit large volumes of structural and interaction data. Bioinformatics 2019, 35, 3989-3995. (CASF-2007) |
(32) | Kang, N.; Wang, X. L.; Zhao, Y. Discovery of small molecule agonists targeting neuropeptide Y4 receptor using homology modeling and virtual screening. Chem. Biol. Drug Des. 2019, 94, 2064-2072. (conclusion, scoring function GlideScore) |
(33) | Ropon-Palacios, G.; Chenet-Zuta, M. E.; Olivos-Ramirez, G. E.; Otazu, K.; Acurio-Saavedra, J.; Camps, I. Potential novel inhibitors against emerging zoonotic pathogen Nipah Virus: a virtual screening and molecular dynamics approach. J. Biomol. Struct. Dynamics 2019, DOI: 10.1080/07391102.2019.1655480. (conclusion, docking decoys) |
(34) | Kairys, V.; Baranauskiene, L.; Kazlauskiene, M.; Matulis, D.; Kazlaukas, E. Binding affinity in drug design: experimental and computational techniques. Expr. Opin. Drug Discov. 2019, 14, 755-768. (review, citation of conlcusion) |
(35) | Nguyen, D. D.; Wei, G. W. AGL-Score: algebraic graph learning score for protein-ligand binding scoring, ranking, docking and screening. J. Chem. Inf. Model. 2019, 59, 3291-3304. (CASF-2013, data set, method) |
(36) | Zheng, L.; Fan, J.; Mu, Y.; OnionNet: a multiple-layer intermolecular-contact-based convolutional neural network for protein-ligand binding affinity prediction. ACS Omega 2019, 4, 15956-15965. (CASF-2013 core set, evaluation method) |
(37) | Zhang, H.; Liao, L.; Saravanan, K. M.; Yin, P.; Wei, Y. DeepBindRG: a deep learning based method for estimating effective protein-ligand affinity. PEERJ 2019, 7, e7362 (CASF-2013) |
(38) | Bresso, E.; Fernandez, D.; Amora, D. X.; Noel, P.; Petitot, A.-S.; de Sa, M. E. L.; Albuquerque, E. V. S.; Danchin, E. G. J.; Maigret, B.; Martins, N. F. A chemosensory GPCR as a potential target to control the root-knot nematode meloidoyne incognita parasitism in plants. Molecules 2019, 24, 3798. (conclusion, scoring function ChemPLP) |
(39) | Preto, J.; Gentile, F.; Assessing and improving the performance of consensus docking strategies using the DockBox package. J. Comput.-Aided Mol. Des. 2019, 33, 817-829. (CASF-2013 core set) |
(40) | Chen, P.; Ke, Y.; Lu, Y.; Du, Y.; Li, J.; Yan, H.; Zhao, H.; Zhou, Y.; Yang, Y. DLIGAND2: an improved knowledge-based energy function for protein-ligand interactions using the distance-scaled, finite, ideal-gas reference state. J. Cheminform. 2019, 11: 52. (CASF-2013 benchmark) |
(41) | Pei, J.; Zheng, Z.; Kim, H.; Song, L. F.; Walworth, S.; Merz, M. R.; Merz, K. M. Random forest refinement of pairwise potentials for protein-ligand decoy detection. J. Chem. Inf. Model. 2019, 59, 3305-3315. (CASF-2013 core set) |
(42) | Ozawa, S.-I.; Takahashi, M.; Yamaotsu, N.; Hirono, S. Structure-based virtual screening for novel chymase inhibitors by in silico fragment mapping. J. Mol. Graph. Model. 2019, 89, 102-108. (CASF-2013 core set) |
(43) | Dittrich, J.; Schmidt, D.; Pfleger, C.; Gohlker, H. Converging a knowledge-based scoring function: DrugScore2018. J. Chem. Inf. Model. 2019, 59, 509-521. (CASF-2013 benchmark) |
(44) | Khan, R.; Zeb, A.; Choi, K.; Lee, G.; Lee, K. W.; Lee, S.-W. Biochemical and structural insights concerning triclosan resistance in a novel YX7K type enoyl-acyl carrier protein reductase from soil metagenome. Sci. Rep. 2019, 9, 15401. (conclusion, scoring function ChemPLP) |
(45) | Macari, G.; Toti, D.; Del Moro, C.; Polticelli, F. Fragment-based ligand-protein contact statistics: application to docking simulations. Int. J. Mol. Sci. 2019, 20, 2499. (CASF-2013 core set and conclusion) |
(46) | Zeb, A.; Kim, D.; Alam, S. I.; Son, M.; Kumar, R.; Rampogu, S.; Parameswaran, S.; Shelake, R. M.; Rana, R. M.; Parate, S.; Kim, J. Y.; Lee, K. W. Computational simulations identify pyrrolidine-2,3-dione derivatives as novel inhibitors of Cdk5/p25 complex to attenuate Alzheimer’s pathology. J. Clin. Med. 2019, 8, 746. (conclusion, scoring function: GoldScore, ASP) |
(47) | Nguyen, D. D.; Wei, G. W. DG-GL: differential geometry-based geometric learning of molecular datasets. Int. J. Numer. Method Biomed. Eng. 2019, 35, e3179. (CASF-2013 core set) |
(48) | Rehman, S. U.; Ali, T.; Alam, S. I.; Ullah, R.; Zeb, A.; Lee, K. W.; Rutten, B. P. F.; Kim, M. O. Ferulic acid rescues LPS-induced neurotoxicity via modulation of the TLR4 receptor in the mouse hippocampus. Mol. Neurobiol. 2019, 56, 2774-2790. (conclusion, scoring function: ChemPLP, ASP) |
(49) | Wojcikowski, M.; Kukielka, M.; Stepniewska-Dziubinska, M. M.; Siedlecki, P. Development of a protein-ligand extended connectivity (PLEC) fingerprint and its application for binding affinity predictions. Bioinformatics 2019, 35, 1334-1341. (CASF-2013 core set) |
(50) | Zeb, A.; Park, C.; Rampogu, S.; Son, M.; Lee, G.; Lee, K. W. Structure-based drug designing recommends HDAC6 inhibitors to attenuate microtubule-associated tau-pathogenesis. ACS Chem. Neurosci. 2019, 10, 1326. (conclusion, scoring function: ChemPLP, ASP) |
(53) | Wang, Z. H.; Liang, H.; Cao, H. J.; Zhang, B. J.; Li, J.; Wang, W. Q.; Qin, S. S.; Wang, Y. F.; Xuan, L. J.; Lai, L. H.; Shui, W. Q. Efficient ligand discovery from natural herbs by integrating virtual screening, affinity mass spectrometry and targeted metabolomics. Analyst 2019, 144, 2881-2890. (conclusion, scoring function: GlidScore) |
(54) | Bojarova, P.; Kulik, N.; Hovorkova, M.; Slamova, K.; Pelantova, H.; Kren, V. The beta-N-acetylhexosaminidase in the synthesis of bioactive glycans: protein and reaction engineering. Molecules 2019, 234, 599. (conclusion, scoring function: GlideScore) |
2018 | |
(51) | Stepniewska-Dziubinska, M. M.; Zielenkiewicz, P.; Siedlecki, P. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction. Bioinformatics 2018, 34, 3666-3674. (CASF-2013 core set for test) |
(52) | Margiotta, E.; Deganutti, G.; Moro, S. Could the presence of sodium ion influence the accuracy and precision of the ligand-posing in the human A2A adenosine receptor orthosteric binding site using a molecular docking approach? Insights from Dockbench. J. Comput.-Aided Mol. Des. 2018, 32, 1337-1346. (conclusion, scoring function: ASP) |
(55) | Araki, M.; Iwata, H.; Ma, B.; Fujita, A.; Terayama, K.; Sagae, Y.; Ono, F.; Tsuda, K.; Kamiya, N.; Okuno, Y. Improving the accuracy of protein-ligand binding mode prediction using a molecular dynamics-based pocket generation approach. J. Comput. Chem. 2018, 39, 2679-2689. (conclusion, scoring function: ASP) |
(56) | Tai, H. K.; Jusoh, S. A.; Siu, S. W. I. Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening. J. Cheminform. 2018, 10:62 (CASF-2013 core set) |
(57) | Han, K.; Zhang, L.; Wang, M.; Zhang, R.; Wang, C.; Zhang, C. Prediction methods of Herbal compounds in Chinese medicinal herbs. Molecules 2018, 23, 2303. (review, citation of CASF project) |
(58) | Yamaotsu, N.; Hirono, S. In silico fragment-mapping method: a new tool for fragment-based/structure-based drug discovery. J. Comput.-Aided Mol. Des. 2018, 32, 1229-1245. (CASF-2013 core set) |
(59) | Gaillard, T. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark. J. Chem. Inf. Model. 2018, 58, 1697-1706. (core set and evaluation) |
(60) | Jedwabny, W.; Lodola, A.; Dyguda-Kazimierowicz, E. Theoretical Model of EphA2-Ephrin A1 Inhibition. Molecules 2018, 23, DOI: 10.3390/molecules23071688. (citation of conclusion) |
(61) | Jimenez, J.; Skalic, M.; Martinez-Rosell, G.; De Fabritiis, G. KDEEP: Protein−Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks. J. Chem. Inf. Model. 2018, 58, 287-296. (SF model training and test on core set) |
(62) | Guedes, I. A.; Pereira, F. S. S.; Dardenne, L. E. Empirical scoring functions for structure-based virtual screening: applications, critical aspects, and challenges. Front. Pharmacol. 2018, 9:1089. (review, training/test set) |
(63) | Pantsar, T.; Poso, A. Binding Affinity via Docking: Fact and Fiction. Molecules 2018, 23, 8:1899. (citation of opinion) |
(64) | Okada-Junior, C. Y.; Monteiro, G. C.; Aguiar, A. C. C.; Batista, V. S.; de Sonza, J. O.; Souza, G. E.; Bueno, R. V.; Oliva, G.; Nascimento-Junior, N. M.; Guido, R. V. C.; Bolzani, V. S. Phthalimide Derivatives with Bioactivity against Plasmodium falciparum: Synthesis, Evaluation, and Computational Studies Involving bc1 Cytochrome Inhibition. ACS Omega 2018, 3, 9424-9430. (Conclusion, scoring function ChemPLP) |
(65) | Zheng, M.; Zhao, J.; Cui, C.; Fu, Z.; Li, X.; Liu, X.; Ding, X.; Tan, X.; Li, F.; Luo, X.; Chen, K.; Jiang, H. Computational chemical biology and drug design: Facilitating protein structure, function, and modulation studies. Med. Res. Rev. 2018, 38, 914-950. (review citation) |
(66) | Ban T.; Ohue, M.; Akiyama, Y. Multiple grid arrangement improves ligand docking with unknown binding sites: Application to the inverse docking problem. Comput. Biol. Chem. 2018, 73, 139-146. (citation of conclusion, GlideScore) |
(67) | Jasper, J. B.; Humbeck, L.; Brinkjost, T.; Koch, O. A novel interaction fingerprint derived from per atom score contributions: exhaustive evaluation of interaction fingerprint performance in docking based virtual screening. J. Cheminform. 2018, 10: 15. (citation of conclusion, ChemPLP) |
(68) | Li, D.-D.; Meng, X.-F.; Wang, Q.; Yu, P.; Zhao, L.-G.; Zhang, Z.-P.; Wang, Z.-Z.; Xiao, W. Consensus scoring model for the molecular docking study of mTOR kinase inhibitor. J. Mol. Graph. Model. 2018, 79, 81-87. (citation of conclusion, docking power) |
(69) | Kumar, S. P. PLHINT: A knowledge-driven computational approach based on the intermolecular H bond interactions at the protein-ligand interface from docking solutions. J. Mol. Graph. Model. 2018, 79, 194-212. (citation of conclusion, docking power) |
(70) | Lin, H.; Siu, S. W. I. A Hybrid Cuckoo Search and Differential Evolution Approach to Protein–Ligand Docking. Int. J. Mol. Sci. 2018, 19, 3181. (PDBbind v2012) |
(71) | Cang, Z.; We, G.-W. Integration of element specific persistent homology and machine learning for protein‐ligand binding affinity prediction. Int. J. Numeric. Methods Biomed. Engine. 2018, 34, e2914. (PDBbind v2007, training and test) |
(72) | Cang, Z.; Mu, L.; Wei, G.-W. Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLoS Comput. Biol. 2018, 14, e1005929. (PDBbind core set) |
(73) | Ashtawy, H. M.; Mahapatra, N. R. Task-specific scoring functions for predicting ligand binding poses and affinity and for screening enrichment. J. Chem. Inf. Model. 2018, 58, 119-133. (SF development and validation) |
(74) | Ashtawy, H. M.; Mahapatra, N. R. Descriptor Data Bank (DDB): a cloud platform for multiperspective modeling of protein-ligand interactions. J. Chem. Inf. Model. 2018, 58, 134-147. (core set) |
2017 | |
(75) | Zafar, A.; Sari, S.; Leung, E.; Pilkington, L. I.; van Rensburg, M.; Barker, D.; Reynisson, J. GPCR Modulation of Thieno[2,3-b]pyridine Anti-Proliferative Agents. Molecules. 2017, 22, 2254. (citation of conclusion) |
(76) | Suslov, E.; Zarubaev, V. V.; Slita, A. V.; Ponomarev, K.; Korchagina, D.; Ayine-Tora, D. M.; Reynisson, J.; Volcho, K.; Salakhutdinov, N. Anti-influenza activity of diazaadamantanes combined with monoterpene moieties. Bioorg. Med. Chem. Lett. 2017, 27, 4531-4535. (citation of conclusion) |
(77) | Kadukova, M.; Grudinin, S. Convex-PL: a novel knowledge-based potential for protein-ligand interactions deduced from structural databases using convex optimization. J. Comput.-Aided Mol. Des. 2017, 31, 943-958. (SF development and validation) |
(78) | Cheron, N.; Shakhnovich, E. I. Effects of sampling on BACE-1 ligands binding free energy predictions via MM-PBSA calculations. J. Comput. Chem. 2017, 38, 1941-1951. (data set) |
(79) | Yan, Z.; Wang, J. SPA-LN: a scoring function of ligand-nucleic acid interactions via optimizing both specificity and affinity. Nucleic Acids Res. 2017, 45, e110. (citation of conclusion) |
(80) | Pedregal, J. R.; Sciortino, G.; Guasp, J.; Municoy, M.; Marechal, J. D. GaudiMM: a modular multi-objective platform for molecular modeling. J. Comput. Chem. 2017, 38, 2118-2126. (citation of conclusion) |
(81) | Baek, M.; Shin, W.-H.; Chung, H. W.; Seok, C. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking. J. Comput.-Aided Mol. Des. 2017, 31, 653-666. (new SF development and validation). |
(82) | Li, G. B.; Yu, Z. J.; Liu, S.; Huang, L. Y.; Yang, L. L.; Lohans, C. T.; Yang, S. Y. IFPTarget: a customized virtual target identification method based on protein-ligand interaction fingerprint analyses. J. Chem. Inf. Model. 2017, 57, 1640-1651. (validation) |
(83) | Nguyen, D. D.; Xiao, T.; Wang, M.; Wei, G. W. Rigidity strengthening: a mechanism for protein-ligand binding. J. Chem. Inf. Model. 2017, 57, 1715-1721. (validation) |
(84) | Wang, B.; Zhao, Z.; Nguyen, D. D.; Wei, G. W. Feature functional theory-binding predictor (FFT-BP) for the blind prediction of binding free energies. Theoret. Chem. Acc. 2017, 136, 55. (validation) |
(85) | Li, Y.; Yang. J. Structural and sequence similarity makes a significant impact on machine-learning-based scoring functions for protein-ligand interactions. J. Chem. Inf. Model. 2017, 57, 1007-1012. (data set) |
(86) | Yu, Z.; Li, P.; Jr., K. M. M. Using ligand-induced protein chemical shift perturbations to determine protein-ligand structures. Biochemistry 2017, 56, 2349-2362. (data set) |
(87) | Sundriyal, S.; Moniot, S.; Mahmud, Z.; Yao, S.; Di Fruscia, P.; Reynolds, C. R.; Dexter, D. T.; Sternberg, M. J. E.; Lam, E. W. F.; Steegborn, C.; Fuchter, M. J. Thienopyrimidinone based sirtuin-2 (SIRT-2)-selective inhibitors bind in the ligand induced selectivity pocket. J. Med. Chem. 2017, 60, 1928-1945. (citation of conclusion) |
(88) | Wang, Y.; Li, L.; Zhang, B.; Xing, J.; Chen, S.; Wan, W.; Song, Y.; Jiang, H.; Jiang, H.; Luo, C.; Zheng, M. Discovery of novel disruptor of silencing telomeric 1-like (DOT1L) inhibitors using a target-specific scoring function for the (S)-adenosyl-L-methionine (SAM)-dependent methyltransferase family. J. Med. Chem. 2017, 60, 2026-2036. (citation of conclusion) |
(89) | Debroise, T.; Shakhnovich, E. I.; Cheron, N. A hybrid knowledge-based and empirical scoring function for protein-ligand interaction: SMoG2016. J. Chem. Inf. Model. 2017, 57, 584-593. (validation of new scoring function) |
(90) | Wang, C.; Zhang, Y.; Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. J. Comput. Chem. 2017, 38, 169-177. (new scoring function development and validation) |
2016 | |
(91) | Ciordia, M.; Perez-Benito, L.; Delgado, F.; Trabanco, A. A.; Tresadern, G. Application of free energy perturbation for the design of BACE1 inhibitors. J. Chem. Inf. Model. 2016, 56, 1856-1871. (citation of conclusion) |
(92) | Bjerrum, E. J. Machine learning optimization of cross docking accuracy. Comput. Biol. Chem. 2016, 62, 133-144. (citation of conclusion) |
(93) | Pires, D. E. V.; Ascher, D. B. CSM-lig: a web server for assessing and comparing protein-small molecule affinities. Nucleic Acids Res. 2016, 44, W557-W561. (data set) |
(94) | Quiroga, R.; Villarreal, M. A. Vinardo: a scoring function based on Autodock Vina improves scoring, docking and virtual screening. PLoS ONE, 2016, e0155183 (new scoring function development and validation) |
(95) | Liu, X.; Liu, J.; Zhu, T.; Zhang, L.; He, X.; Zhang, J. Z. H. PBSA_E: a PBSA-based free energy estimator for protein-ligand binding affinity. J. Chem. Inf. Model. 2016, 56, 854-861. (validation) |
(96) | Tanchuk, V. Y.; Tanin, V. O.; Vovk, A. I.; Poda, G. A new, improved hybrid scoring function for molecular docking and scoring based on AutoDock and AutoDock Vina. Chem. Biol. Drug Des. 2016, 87, 618-625. (new scoring function validation) |
(97) | Yan, Z.; Wang, J. Incorporating specificity into optimization: evaluation of SPA using CSAR 2014 and CASF 2013 benchmarks. J. Comput.-Aided Mol. Des. 2016, 30, 219-227. (validation) |
(98) | Hauser, A. S.; Windshugel, B. LEADS-PEP: a benchmark data set for assessment of peptide docking performance. J. Chem. Inf. Model. 2016, 56, 188-200. (citation of conclusion) |
(99) | Shin, W. H.; Christoffer, C. W.; Wang, J.; Kihara, D. PL-PatchSurfer2: improved local surface matching-based virtual screening method that is tolerant to target and ligand structure variation. J. Chem. Inf. Model. 2016, 56, 1676-1691. (data set) |
(100) | Fang, Y.; Ding, Y.; Feinstein, W. P.; Koppelman, D. M.; Moreno, J.; Jarrell, M.; Ramanujam, J.; Brylinski, M. GeauxDock: accelerating structure-based virtual screening with heterogeneous computing. PLoS ONE 2016, e0158898. (validation) |
(101) | Xu, D.; Meroueh, S. O. Effect of binding pose and modeled structures on SVMGen and GlideScore enrichment of chemical libraries. J. Chem. Inf. Model. 2016, 56, 1139-1151. (data set) |
(102) | Chen, A. S. Y.; Westwood, N. J.; Brear, P.; Rogers, G. W.; Mavridis, L.; Mitchell, J. B. O. Mol. Inform. 2016, 35, 125-135. (data set) |
2015 | |
(103) | Ain, Q. U.; Aleksandrova, A.; Roessler, F. D.; Ballester, P. J. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. WIREs Comput. Mol. Sci. 2015, 5, 405-424. |
(104) | Khamis, M. A.; Gomaa, W. Comparative assessment of machine-learning scoring functions on PDBbind 2013. Eng. Appl. Art. Intell. 2015, 45, 136-151. (validation) |
(105) | Alhossary, A.; Handoko, S. D.; Mu, Y.; Kwoh, C. K. Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics 2015, 31, 2214-2216. (data set) |
(106) | Li, H.; Leung, K. S.; Wong, M. H.; Ballester, P. J. Low-quality structural and interaction data improves binding affinity prediction via random forest. Molecules 2015, 20, 10947-10962. (validation) |
(107) | Yang, Z.; Liu, Y.; Chen, Z.; Xu, Z.; Shi, J.; Chen, K.; Zhu, W. A quantum mechanics-based halogen bonding scoring function for protein-ligand interactions. J. Mol. Model. 2015, 21:138. (validation) |
(108) | Yan, Z.; Wang, J. Optimizing the affinity and specificity of ligand binding with the inclusion of solvation effect. Proteins 2015, 83, 1632-1642. (validation) |
(109) | Houston, D. R.; Yen, L.; Pettit, S.; Walkinshaw, M. D. Structure- and ligand-based virtual screening identifies new scaffolds for inhibitors of the oncoprotein MDM2. PLoS ONE 2015, e0121424. (citation of conclusion) |
(110) | Khamis, M. A.; Gomaa, W.; Ahmed, W. F. Machine learning in computational docking. Art. Intell. Med. 2015, 63, 135-152. (review citation). |
(111) | Danishuddin, M.; Khan, A. U. Structure based virtual screening to discover putative drug candidates: necessary considerations and successful case studies. Methods 2015, 71, 135-145. (review citation) |
(112) | Ashtawy, H. M.; Mahapatra, N. R. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins. BMC Bioinformatics 2015, 16:S3. (validation) |
(113) | Bai, F.; Liao, S.; Gu, J.; Jiang, H.; Wang, X.; Li, H. An accurate metalloprotein-specific scoring function and molecular docking program devised by a dynamic sampling and iteration optimization strategy. J. Chem. Inf. Model. 2015, 55, 833-847. (citation of conclusion) |
(114) | Wang, Y.; Guo, Y.; Kiang, Q.; Pu, X.; Ji, Y.; Zhang, Z.; Li, M. A comparative study of family-specific protein-ligand complex affinity prediction based on random forest approach. J. Comput.-Aided Mol. Des. 2015, 29, 349-360. |
(115) | Li, H.; Leung, K. S.; Wong, M. H.; Ballester, P. J. Improving AutoDock Vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets. Mol. Inform. 2015, 34, 115-126. (validation) |
(116) | Zheng, Z.; Wang, T.; Li, P.; Jr., K. M. M. KECSA-movable type implicit solvation model (KMTISM). J. Chem. Theory Comput. 2015, 11, 667-682. (data set) |
(117) | Yi, X.; Zhang, Y.; Wang, P.; Qi, J.; Hu, M.; Zhong, G. Ligands binding and molecular simulation: the potential investigation of a biosensor based on an insert odorant binding protein. Int. J. Biol. Sci. 2015, 11, 75-87. |
(118) | Yan, C.; Zou, X. Predicting peptide binding sites on protein surfaces by clustering chemical interactions. J. Comput. Chem. 2015, 36, 49-61. |
2014 | |
(119) | Greenidge, P. A.; Kramer, C.; Mozziconacci, J.-C.; Sherman, W. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA. J. Chem. Inf. Model. 2014, 54, 2697-2717. |
(120) | Gabel, J.; Desaphy, J.; Rognan, D. Beware of machine learning-based scoring functions—on the danger of developing black boxes. J. Chem. Inf. Model. 2014, 54, 2807-2815. |
(121) | Lindblom, P. R.; Wu, G.; Liu, Z.; Jim, K.-C.; Baldwin, J. J.; Gregg, R. E.; Claremon, D. A.; Singh, S. B. An electronic environment and contact direction sensitive scoring function for predicting affinities of protein-ligand complexes in Contour. J. Mol. Graph. Model. 2014, 53, 118-127. |
(122) | Li, H.; Leung, K.-S.; Wong, M.-H.; Ballester, P. J. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study. BMC Bioinformatics 2014, 15:291. |
(123) | Sun, H.; Li, Y.; Tian, S.; Xu, L.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys. Chem. Chem. Phys. 2014, 16, 16719-16729. |
(124) | Campbell, A. J.; Lamb, M. L.; Joseph-McCarthy, D. Ensemble-based docking using biased molecular dynamics. J. Chem. Inf. Model. 2014, 54, 2127-2138. |
(125) | Hu, B.; Lill, M. A. PharmDock: a pharmacophore-based docking program. J. Cheminformatics 2014, 6:14. |
(126) | Gupta, S. D.; Snigdha, D.; Mazaira, G. I.; Galigniana, M. D.; Subrahmanyam, C. V. S.; Gowrishankar, N. L.; Raghavendra, N. M. Molecular docking study, synthesis and biological evaluation of Schiff bases as Hsp90 inhibitors. Biomed. Pharma. 2014, 68, 369-376. |
(127) | Chen, Y.-F.; Shiau, A.-L.; Wang, S.-H.; Yang, J.-S.; Chang, S.-J.; Wu, C.-L.; Wu, T.-S. Zhankuic Acid A isolated from Taiwanofungus camphorates is a novel selective TLR4/MD-2 antagonist with anti-inflammatory properties. J. Immunology 2014, 192, 62778-62786. |
(128) | Ballester, P. J.; Schreyer, A.; Blundell, T. L. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity? J. Chem. Inf. Model. 2014, 54, 944-955. |
(129) | Li, H.; Leung, K.-S.; Ballester, P. J.; Wong, M.-H. istar: a web platform for large-scale protein-ligand docking. PLOS One 2014, 9, e85678 |
(130) | Sun, X.-Q.; Chen, L.; Lo, Y.-Z.; Li, W.-H.; Liu, G.-X.; Tu, Y.-Q.; Tang, Y. Structure-based ensemble-QSAR model: a novel approach to the study of the EGFR tyrosine kinase and its inhibitors. Acta Pharm. Sinica 2014, 35, 301-310. |
2013 | |
(131) | Shin, W.-H.; Kim, J.-W.; Kim, D.-S.; Seok, C. GalaxyDock2: Protein-Ligand Docking Using Beta-Complex and Global Optimization. J. Comput. Chem. 2013, 34, 2647-2656. |
(132) | Liu, Q.; Kwoh, C. K.; Li, J. Binding Affinity Prediction for Protein-Ligand Complexes Based on β Contacts and B Factor. J. Chem. Inf. Model. 2013, 53, 3076-3085. |
(133) | Liu, Y.; Xu, Z.; Yang, Z.; Chen, K.; Zhu, W. A knowledge-based halogen bonding scoring function for predicting protein-ligand interactions. J. Mol. Model. 2013, 19, 5015-5030. |
(134) | Zilian, D.; Sotriffer, C. A. SFCscoreRF: A random forest-based scoring function for improved affinity prediction of protein-ligand complexes. J. Chem. Inf. Model. 2013, 53, 1923-1933. |
(135) | Wang, S.-H.; Wu, Y.-T.; Kuo, S.-C.; Yu, J. HotLig: A molecular surface-directed approach to scoring protein-ligand interactions. J. Chem. Inf. Model. 2013, 53, 2181-2195. |
(136) | Li, G.-B.; Yang, L.-L.; Wang, W.-J.; Li, L.-L.; Yang, S.-Y. ID-Score: A new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J. Chem. Inf. Model. 2013, 53, 592-600. |
(137) | Schneider, N.; Lange, G.; Hindle, S.; Klein, R.; Rarey, M. A consistent description of Hydrogen bond and Dehydration energies in protein-ligand complexes: methods behind the HYDE scoring function. J. Comput.-Aided. Mol. Des. 2013, 27, 15-29. |
2012 | |
(138) | Yan, Z.; Wang, J. Specificity quantification of biomolecular recognition and its implication for drug discovery. SCI. Rep. 2012, 2, 309. |
(139) | Korb, O.; Ten Brink, T.; Victor Paul Raj, F. R.; Keil, M.; Exner, T. E. Are predefined decoy sets of ligand poses able to quantify scoring function accuracy? J. Comput.-Aided. Mol. Des. 2012, 26, 185-197. |
(140) | Hsieh, J.; Yin, S.; Wang, X. S.; Liu, S.; Dokholyan, N. V.; Tropsha, A. Cheminformatics Meets Molecular Mechanics: A Combined Application of Knowledge-Based Pose Scoring and Physical Force Field-Based Hit Scoring Functions Improves the Accuracy of Structure-Based Virtual Screening. J. Chem. Inf. Model. 2012, 52, 16-28. |
2011 | |
(141) | Wang, J.-C.; Lin, J.-H.; Chen, C.-M.; Perryman, A. L.; Olson, A. J. Robust Scoring Functions for Protein-Ligand Interactions with Quantum Chemical Charge Models. J. Chem. Inf. Model. 2011, 51, 2528-2537. |
(142) | Neudert, G.; Klebe, G. DSX: A Knowledge-Based Scoring Function for the Assessment of Protein-Ligand Complexes. J. Chem. Inf. Model. 2011, 51, 2731-2745. |
(143) | Hsieh, J.-H.; Yin, S.; Liu, S.; Sedykh, A.; Dokholyan, N. V.; Tropsha, A. Combined Application of Cheminformatics- and Physical Force Field-Based Scoring Functions Improves Binding Affinity Prediction for CSAR Data Sets. J. Chem. Inf. Model. 2011, 51, 2027-2035. |
(144) | Osolodkin, D. I.; Palyulin, V. A.; Zefirov, N. S. Structure-Based Virtual Screening of Glycogen Synthase Kinase 3 beta Inhibitors: Analysis of Scoring Functions Applied to Large True Actives and Decoy Sets. Chem. Biol. Drug Des. 2011, 78, 378-390. |
(145) | Ballester, P. J.; Mitchell, J. B. Comments on "Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets": Significance for the Validation of Scoring Functions. J. Chem. Inf. Model. 2011, 51, 1739-1741. |
(146) | Spitzmueller, A.; Velec, H. F. G.; Klebe, G. MiniMuDS: A New Optimizer using Knowledge-Based Potentials Improves Scoring of Docking Solutions. J. Chem. Inf. Model. 2011, 51, 1423-1430. |
(147) | Kramer, C.; Gedeck, P. Global Free Energy Scoring Functions Based on Distance-Dependent Atom-Type Pair Descriptors. J. Chem. Inf. Model. 2011, 51, 707-720. |
(148) | Plewczynski, D.; Lazniewski, M.; von Grotthuss, M. VoteDock: Consensus Docking Method for Prediction of Protein-Ligand Interactions, J. Chem. Inf. Model. 2011, 32, 568-581. |
(149) | Plewczynski, D.; Lazniewski, M.; Augustyniak, R.; Ginalski, K. Can We Trust Docking Results? Evaluation of Seven Commonly Used Programs on PDBbind Database. J. Comput. Chem. 2011, 32, 742-755. |
(150) | Tang, Y. T.; Marshall, G. R. PHOENIX: A Scoring Function for Affinity Prediction Derived Using High-Resolution Crystal Structures and Calorimetry Measurements. J. Chem. Inf. Model. 2011, 51, 214-228. |
(151) | Shen, Q.; Xiong, B.; Zheng, M.; Luo, X.; Luo, C.; Liu, X.; Du, Y.; Li, J.; Zhu, W.; Shen, J.; Jiang, H. Knowledge-Based Scoring Functions in Drug Design: 2. Can the Knowledge Base Be Enriched? J. Chem. Inf. Model. 2011, 51, 386-397. |
2010 | |
(152) | Kramer, C.; Gedeck, P. Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets. J. Chem. Inf. Model. 2010, 50, 1961-1969. |
(153) | Sandor, M.; Kiss, R.; Keseru, G. M. Virtual Fragment Docking by Glide: a Validation Study on 190 Protein-Fragment Complexes. J. Chem. Inf. Model. 2010, 50, 1165-1172. |
(154) | Pencheva, T.; Soumana, O. S.; Pajeva, I.; Miteva, M. A. Post-docking virtual screening of diverse binding pockets: Comparative study using DOCK, AMMOS, X-Score and FRED scoring functions. Eur. J. Med. Chem. 2010, 45, 2622-2628. |
(155) | Ballester, P. J.; Mitchell, J. B. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 2010, 26, 1169-1175. |
(156) | Das, S. Binding Affinity Prediction with Property-Encoded Shape Distribution Signatures. J. Chem. Inf. Model. 2010, 50, 298-308. |